## ПATIBIA UПIVERSITY

of SCience and technology

## FACULTY OF HEALTH, NATURAL RESOURCES AND APPLIED SCIENCES

SCHOOL OF AGRICULTURE AND NATURAL RESOURCES SCIENCES DEPARTMENT OF AGRICULTURAL SCIENCES AND AGRIBUSINESS

| QUALIFICATIONS: <br> BACHELOR OF SCIENCE IN AGRICULTURE <br> BACHELOR OF SCIENCE IN HORTICULTURE |  |
| :--- | :--- | :--- |
| QUALIFICATIONS CODE: O7BAGA |  |
| O7BHOR |  | LEVEL: 7


| FIRST OPPORTUNITY EXAMINATION QUESTION PAPER |  |
| :--- | :--- |
| EXAMINER: | MS. PAULINA NDINELAGO NAUPU |
| MODERATOR: | MRS. LUCIA TUYENI-KELAO KAFIDI |

## INSTRUCTIONS

1. Answer all the questions.
2. Write neatly and clearly.
3. Mark all answers clearly with their respective question numbers.
4. All written work MUST be done in blue or black ink.
5. No books, notes and other additional aids are allowed.

## PERMISSIBLE MATERIALS

1. Calculator
2. Examination paper
3. Examination script
QUESTION 1
1.1 What is the difference between precision and accuracy in measurement?\{2\}
1.2 What is the difference between a significant figure and a non-significant figure?\{2\}
1.3 What is the difference between a pure substance and a mixture? ..... \{2\}
QUESTION 2
2.1 Differentiate between a homogeneous mixture and a heterogeneous mixture.
2.2 What is the difference between a physical change and a chemical change?\{2\}
2.3 What is an ionic bond and what charges does it form?\{2\}
2.4 What is the relationship between molarity and molality? ..... \{2\}

## QUESTION 3

3.1 What is the molarity of a solution that contains 0.25 moles of glucose dissolved ..... in 500 mL of water? ..... \{5\}
3.2 How many milliliters of a 1.5 M solution of hydrochloric acid are needed to prepare 500 mL of a 0.25 M solution? ..... \{6\}

## QUESTION 4

4.1 Calculate the molarity of a solution made by dissolving 23.4 g of sodium sulfate ( $\mathrm{Na}_{2} \mathrm{SO}_{4}$ ) in enough water to form 125 mL of solution.
4.2 A 25.00 mL sample of a hydrochloric acid solution of unknown concentration was titrated with 0.100 M sodium hydroxide solution. It took 37.55 mL of the sodium hydroxide solution to reach the endpoint.
Using this equation, $\mathrm{HCl}+\mathrm{NaOH} \rightarrow \mathrm{NaCl}+\mathrm{H} 2 \mathrm{O}$, what is the molarity of the hydrochloric acid solution?

## QUESTION 5

Magnesium has three isotopes with mass numbers 24,25 , and 26.
5.1 Write the complete chemical symbol for each
5.1 How many neutrons are in an atom of each isotope?

### 5.3 Draw the ionic bond between magnesium and bromide. Clearly show how electron are transferred/shared/lost and the resulting ions

## QUESTION 6

Provide the empirical formula of the following compounds.
6.1
$\mathrm{C}_{4} \mathrm{H}_{8}$
$6.2 \quad \mathrm{C}_{3} \mathrm{~N}_{12}$
$6.3 \quad \mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{5}$
$6.4 \quad P_{3} N_{5}$

## QUESTION 7

For each of the following identify it as either ionic or molecular compound. For ionic, indicate the charges of each element.
7.1 H2O
7.2 MgCl 2
7.3 CO2
7.4 Fe2O3
7.5 $\operatorname{Sr}(\mathrm{OH}) 2$
7.6 C6H12O6

## QUESTION 8

Indicate the type of each of the following chemical reactions
8.1 $\quad 2 \mathrm{Na}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{NaCl}$
$8.2 \quad \mathrm{H}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
8.3 $\quad 2 \mathrm{KCl} \rightarrow 2 \mathrm{~K}+\mathrm{Cl}_{2}$
8.4 $\mathrm{S}+\mathrm{O}_{2} \rightarrow \mathrm{SO}_{2}$

## $8.5 \quad \mathrm{C}_{5} \mathrm{H}_{12}+\mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$

QUESTION 9
9.1 Hydrosulfuric acid
9.2 Iron (III) hydroxide
9.3 Hydrophosphoric acid
QUESTION 10
Balance the following chemical equations
10.1 $\mathrm{C}+\mathrm{SO}_{2} \rightarrow \mathrm{CS}_{2}+\mathrm{CO}$
10.2 $\mathrm{Xe}+\mathrm{F}_{2} \rightarrow \mathrm{XeF}_{6}$
10.3 $\mathrm{Ag}+\mathrm{H}_{2} \mathrm{~S} \rightarrow \mathrm{Ag}_{2} \mathrm{~S}+\mathrm{H}_{2}$
$10.4 \mathrm{FeCl}_{3}+\mathrm{NaOH} \rightarrow \mathrm{Fe}(\mathrm{OH})_{3}+\mathrm{NaCl}$
QUESTION 11
Consider the following equation: $2 \mathrm{H}_{2} \mathrm{~S}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
11.1 How many moles of $\mathrm{O}_{2}$ are needed to combine with 8.4 moles of $\mathrm{H}_{2} \mathrm{~S}$\{5\}
11.2 Starting with 9.2 moles of $\mathrm{O}_{2}$,
11.2.1 How many moles of $\mathrm{H}_{2} \mathrm{~S}$ will you need? ..... \{5\}
11.2.2 How many moles of $\mathrm{SO}_{2}$ will you get? ..... \{5\}

## QUESTION 12

3.2 moles of $\mathrm{N}_{2}$ reacts with 5.4 moles $\mathrm{H}_{2}$ in the following chemical reaction:
$\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$
12.1 What is the limiting reactant
12.2 How many moles of ammonia are formed
12.3 How much of the excess reactant in moles is left over?

| $\underset{\substack{1 / A \\ 1 A}}{1}$ |  | Periodic Table of the Elements |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\underset{\text { Hen }}{H}$ | ${ }_{1}^{1 / 2}$ |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & 13 \\ & \text { lin } \\ & 3 A \end{aligned}$ | $\underset{\substack { 14 \\ \begin{subarray}{c}{v A \\ 4 A{ 1 4 \\ \begin{subarray} { c } { v A \\ 4 A } } \\ {\hline}\end{subarray}}{ }$ | $\begin{aligned} & 15 \\ & { }_{5 A} \end{aligned}$ | $\underset{\substack{16 \\ V_{6 A}}}{\substack{\text { an }}}$ |  | ${ }^{2} \mathrm{He}$ |
|  | ${ }^{4} \mathrm{Be}$ |  |  |  |  |  |  |  |  |  |  | B | C <br> $\underset{\text { citain }}{c}$ | ${ }^{7} \mathrm{~N}$ | $\begin{aligned} & 8 \\ & 0 \\ & 0,0 \\ & 0 \end{aligned}$ |  |  |
| ${ }^{11} \mathrm{Na}$ <br> Na |  | $\begin{gathered} \text { III } \\ \substack{\text { IIB } \\ \hline 8} \end{gathered}$ | $\underset{\substack{\text { IVB } \\ 4 B}}{\substack{\text { n }}}$ | $\begin{gathered} \mathrm{y} \\ \substack{\mathrm{ve} \\ \mathrm{sB}} \\ \hline \end{gathered}$ | $\underset{\substack{V_{1 B}^{6} \\ 6 B}}{\substack{\text { n }}}$ | $\begin{gathered} 7118 \\ 78 \\ \hline \end{gathered}$ | $8$ | $—_{8}^{9 I I I}$ | $\overbrace{1}^{10}$ | $\begin{aligned} & 11 \\ & { }_{18}^{18} \\ & 18 \end{aligned}$ | $\begin{gathered} 12 \\ { }_{118}^{118} \\ 2 B \end{gathered}$ |  | ${ }^{146} \mathrm{Si}$ | ${ }^{15} \mathrm{P}$ | ${ }^{16} S$ |  |  |
| ${ }^{19} \mathrm{~K}$ | $\begin{aligned} & { }^{20} \mathrm{Ca} \\ & \\ & \\ & \hline \end{aligned}$ |  | ${ }^{22} \mathrm{Ti}^{2}$ | ${ }^{23} V$ |  | ${ }_{2}^{25} \mathrm{Mn}$ |  | ${ }^{27} \mathrm{Co}$ |  | ${ }^{29} \mathrm{Cu}$ |  | $\begin{gathered} \text { Ga } \\ \substack{\text { Gativis }} \end{gathered}$ | Ge | ${ }^{33} \mathrm{As}$ |  | ${ }^{35} \mathrm{Br}$ |  |
| ${ }^{37} R \mathrm{R}$ | ${ }^{38} \mathrm{Sr}$ | ${ }^{39} Y$ | ${ }^{40} z_{2} z_{i}$ | $\begin{aligned} & { }^{41} \begin{array}{l} \text { ND } \\ N_{20} \\ N_{2020} \end{array} \end{aligned}$ | $\begin{aligned} & { }^{42} \mathrm{Mo} \\ & { }^{2} \mathrm{Mo} \end{aligned}$ | ${ }^{43} \mathrm{TC}$ |  |  |  | ${ }^{47} \mathrm{Ag}$ |  | ${ }^{49} \text { In }$ |  | ${ }^{51} \mathrm{Sb}$ | ${ }_{\text {a }}^{\text {a }}$ | ${ }^{53}$ |  |
| ${ }^{55} \mathrm{Cs}$ <br>  |  | 57.71 |  |  |  | ${ }_{\substack{75 \\ \\ \text { Re } \\ \text { nimion }}}$ |  |  |  |  |  |  |  | ${ }^{83} \mathrm{Bi}$ |  |  |  |
| ${ }^{87} \mathrm{Fr}$ | $\stackrel{88}{R a}$ | ${ }^{89.103}$ |  | ${ }_{\substack{\text { a }}}^{105}$ |  |  |  |  | ${ }^{110}{ }^{10} \mathrm{D} s$ | ${ }^{111} \mathrm{Rg}$ | ${ }^{112}{ }^{112}$ |  |  | $\begin{aligned} & \text { 115 } \\ & \text { Mc } \\ & \text { nucum } \\ & \text { naind } \end{aligned}$ | Lv | ${ }^{117}{ }^{117} \mathrm{~T}$ |  |


| Lantundue <br> Sorles |  | ${ }^{58} \mathrm{Ce}$ <br> $\underset{\substack{\text { c.i.i. } \\ \text { neill }}}{\substack{0}}$ | ${ }^{59} \mathrm{Pr}$ |  |  | ${ }^{622} \text { Sm }$ | ${ }^{63}{ }^{63} \mathrm{Eu}$ | ${ }^{64}{ }^{64}$ |  | ${ }^{66}{ }^{66} \mathrm{Dy}$ |  |  |  | ${ }^{70} \mathrm{Yb}$ | ${ }^{71} \mathrm{Lu}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\underset{\substack{\text { Actinde } \\ \text { Sorlos }}}{ }$ | ${ }^{89} \mathrm{Ac}$ | ${ }^{30} \mathrm{Th}$ | Pa | ${ }^{92}$ | ${ }^{93} \mathrm{~Np}$ | ${ }^{94} \mathrm{Pu}$ | ${ }^{95} \mathrm{Am}$ | Cm | Bk | Cf | ${ }^{90}$ Es | Fm | Md | ${ }^{102}$ | ${ }^{103} \mathrm{Lr}$ |
|  |  | Numal | comm | Tamaition |  |  |  | , | Hatoon | Nois |  |  |  |  |  |

